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Cellular proliferation is an essential feature of the adaptive immune response. The introduction of the division tracking dye

carboxyfluorescein diacetate succinimidyl ester (CFSE) has made it possible to monitor the number of cell divisions during

proliferation and to examine the relationship between proliferation and differentiation. Although qualitative examination of CFSE

data may be useful, substantially more information about division and death rates can be extracted from quantitative CFSE time-

series experiments. Quantitative methods can reveal in detail how lymphocyte proliferation and survival are regulated and altered

by signals such as those received from co-stimulatory molecules, drugs and genetic polymorphisms. In this protocol, we present a

detailed method for examining time-series data using graphical and computer-based procedures available to all experimenters.

INTRODUCTION
Much of our understanding of immune regulation has been made
from experiments examining lymphocyte proliferation. Traditional
in vitro methods take a snapshot of the number of dividing cells by
pulsing with tritiated thymidine or measuring total cell number
indirectly1,2. These methods provide relative information about
broad effects on proliferation but give no deep insight into how the
proliferative response is being altered. For example, a greater
number of cells or greater uptake of tritiated thymidine in culture
A compared to culture B could mean any one of the following:
(a) more cells are responding in A and the division rate is the same
for all cells; (b) cells are entering division earlier in culture A; (c) the
division rates are the same in A and B but there is less death in
culture A; or (d) the division rate is faster in culture A than B.

These scenarios can be distinguished with the additional infor-
mation provided by using 5 (and 6)-CFSE division tracking and
quantitative flow cytometric methods.

Interpreting CFSE data requires a working model of the under-
lying dynamic cell changes associated with division. A quantitative
model assigns a minimal set of informative parameters to describe
the behavior of a proliferating population of cells, thus allowing
comparisons of proliferative responses. In recent years, quantitative
methods have been applied to many different protocols for stimu-
lating lymphocytes in vitro, including both T and B cells of mouse
and human origin3–6. Surprisingly, all lymphocytes tend to follow
similar kinetic and stochastic characteristics, which has allowed the
development of standardized models that can be used to acquire a
great deal of information about lymphocyte proliferation.

Key features of lymphocyte proliferation
The following sections provide a summary of the key features of
lymphocyte proliferation and the important model parameters that
have emerged from these studies. These parameters form the basis for
the experimental and analytical methods described in this protocol.

The time to first division distribution. Inspection of any CFSE
profile reveals that both B and T cells typically do not divide

synchronously, but are spread across divisions. The main source of
this variation is the time cells take to enter their first division. Thus,
the time to first division distribution exhibited by the cell population
is an important descriptive feature of any model. Direct measurement
of times to divide for purified populations of T or B cells using the
colcemid method reveals them to closely approximate a lognormal
distribution5. In some cases, the more familiar Normal distri-
bution also provides a reasonable fit to the time to first division curve3.
Mathematical models that use simple differential equations approxi-
mate the variation in entry to first division with a delayed-exponential
curve7–9. At present, we do not know how the variation in division
times arises from internal or external influences and therefore there is
no predictive theory as to the correct or exact distribution. For this
reason, the choice of distribution must be made either for empirical
accuracy (lognormal distribution) or practical advantage (Normal
distribution) or to simplify the mathematical treatment (delayed-
exponential). The precursor cohort method that is presented in this
article uses a Normal (also known as a Gaussian) distribution to
describe time to first division and can be contrasted with the Cyton
model10, which uses the more accurate lognormal distribution.

Progressor fraction. Only a certain proportion of a starting
population of cells will have participated in division by the end
of an experiment. Some cells do not divide because they die first,
others may simply not be stimulated and others may not have
reached their ‘time to first division’ before the end of the experi-
ment. The progressor fraction parameter therefore describes the
proportion of cells that participate in division. Models with
different levels of sophistication accommodate these alternatives
in various ways. In the models described in this article, the
precursor cohort method provides an estimate of the fraction of
progressing cells that does not distinguish between those that die
and those that are unstimulated. Alternatively, the Cyton model
provides an estimate of the progressor fraction as if there were no
cell death and the simultaneous death rate of undivided cells is
described with an additional parameter.
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Subsequent division time. Once cells enter the first division, their
subsequent divisions usually, but not always, proceed more rapidly
and display little variation in the length of cycle times. For strongly
stimulated T and B cells, it is often sufficient to assume that the
subsequent divisions follow, and can be described by, an exact
division time. In contrast, more weakly stimulated cells may exhibit
significant variation in subsequent division times.

Cell death. All cell populations placed in culture are subject to
some death. This death can be the result of the cell preparation
process (‘mechanical death’10), which exhibits itself as a very rapid
loss of a proportion of undivided cells. Alternatively, death of
undivided cells may be more protracted and due to deprivation of
survival factors found in vivo3,11. The simplest distribution describ-
ing such loss is the exponential and follows a curve akin to that of
radioactive decay3. This approach is used in the precursor cohort
method and allows the survival of cells under different conditions
to be expressed as a half-life. More accuracy can be achieved by
assuming time-dependent survival distributions10.

Death of dividing cells. The survival of dividing cells also varies
under different conditions. The precise nature of how survival and
division interleave remains unknown. The precursor cohort meth-
od provides a method of estimating the proportion of cells lost per
division. The Cyton model assumes that a population of dividing
cells has an intrinsic time-to-die parameter that can be described by
a probability distribution that takes the start of each subsequent
division as time zero.

Additional considerations
The experimenter needs also to be aware that there are possible
points of departure from the typical lymphocyte proliferation
behavior described above. Some examples of nonstandard behavior
include the following:

(1) Limited proliferation. Proliferation of primary lymphocytes
cannot be sustained indefinitely in culture. Proliferation may be
restricted owing to limitations of nutrients in the culture medium or
overcrowding of the culture vessel. There are also situations in which
the number of divisions appears to be regulated by the strength of
initial stimulation or the continued presence of stimulation10.

(2) Change of conditions with time. If proliferating cells produce
a growth factor capable of influencing their own growth, then
deviations from the expected outcomes will likely occur.

(3) Cell density. Contact between cells may affect proliferation
parameters and care must be taken to develop culture conditions
that minimize such effects if comparisons are to be made.

(4) Division-linked changes. Early division-tracking experiments
with CFSE revealed that cell differentiation can be linked to the
progression of cells through successive divisions12,13. An emerging
differentiated population may have different proliferation and/or
survival properties to undifferentiated cells, resulting in nonstan-
dard outcomes. Similarly, any kinetic parameter may potentially be
linked to division in this way, even without differentiation. Thus,
division times, or times to die, could progressively change with
division in some situations.

When examining the underlying kinetic behavior of a cell
population in different stimulatory conditions, it is preferable to
work in a minimal system to ensure that all variables can be
adequately controlled. With this in mind, much of the quantitative

work performed to date has been conducted in vitro. In principle,
the same methodology can be applied to data from in vivo
experiments. However, the greater complexity of an in vivo system
(e.g., the inability to distinguish between cell death and cell
migration) will likely make the interpretation of the results of
these experiments less definite.

It is not possible to anticipate all of the alternative potential
outcomes from a quantitative analysis of a CFSE data series.
However, the methods provided here are a valuable starting point
for investigating and comparing lymphocyte proliferation in var-
ious stimulation conditions. The following protocol describes how
to conduct thorough CFSE time-series experiments, analyze CFSE
profiles to extract cell numbers and study the resulting data to
extract rates of division and death. We favor the use of both
graphical methods and automated model fitting. The former
method facilitates a familiarity with the data and reveals trends
and differences in a visual, intuitive way. When data are known to
conform to a particular model, then direct computer-aided fitting
and parameter estimation are both time-efficient and accurate.

Considerations before obtaining data
Experimental design is important. Triplicate cultures for each
culture condition at each time point increase the accuracy of the
assay. The following factors should be considered when designing
the experiment.
Time points:A typical CFSE time-series experiment requires 8–12

time points spaced 6–12 h apart. Choose harvest times based on the
required information from the experiment. The first time point
should be taken at approximately 5 h, as this gives a more accurate
starting cell number than a count at 0 h owing to the immediate
initial ‘mechanical’ death that can sometimes be observed10. For
examination of early survival and proliferation behavior, it is
necessary to have multiple time points up to and including the
first division (B40 h). For analysis of the extent and duration of the
entire response, it is ideal to have two time points per day until the
experiment is complete.
Starting cell number: A minimal starting cell number must be

chosen that is appropriate for the stimulation conditions. The ideal
starting cell number will vary between cell type and stimulation
condition. This must be low enough to allow multiple rounds of
cell division before overgrowth but not so low as to jeopardize
interactions that are cell density-dependent and required for
proliferation.
Controls: Appropriate analytical controls should be chosen. This

is described in detail in the accompanying article14.

Overview of the procedure
Having acquired the data for each harvest time point (Steps 1
and 2), there are two stages in the further analysis. The first stage
(Steps 3–7) is to analyze each harvest time point individually,
calculate the total number of live and dead cells for each stimulation
condition and finally to calculate the number of cells in each
division on the basis of CFSE profiles. In the second stage (Step 8),
the data from each time point can be compiled for analysis of the
full time course. This enables information about other proliferation
parameters, including division and death rates, to be obtained. Key
to this analysis is adopting a model of the underlying growth
and survival dynamics. We describe two methods, the first
method (Steps 8A and B) provides information intuitively using
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a graphical method called the precursor cohort method. The
second method (Step 8C) involves the use of an existing software
package that allows data to be fitted directly using a model of
lymphocyte proliferation: this is called the Cyton Calculator
method.
Precursor cohort method: In this article, we present two options

for analyzing precursor cohort plots (Steps 8A and B). Option A
describes a method suitable for the basic user, which utilizes
in-built statistical tools in software such as GraphPad Prism
(Graphpad Software Inc.) and Microsoft Excel (Microsoft). Option
B describes an advanced method that users with sophisticated
mathematical skills will be able to implement in suitable platforms
such as C++, R and Matlab (Mathworks). This advanced method
allows more thorough statistical analyses such as calculation of
95% confidence intervals. The precursor cohort method utilizes
plots that illustrate the progression of the unsynchronized
population of cells across divisions based on their CFSE profiles.
CFSE profiles are normalized by dividing the cell numbers by
2division number to remove the effect of cell expansion (Step 8A(i)).
Therefore, the behavior of the starting population of cells can be
tracked through divisions. These plots are called precursor cohort
plots. This method assumes a model of cell proliferation whereby
cells follow a Normal distribution of time to enter first division and
divide regularly at each subsequent division. Survival parameters
are expressed as a half-life before first division and as a determi-
nistic proportion of cells dying through each subsequent division.

The following basic parameters can be estimated using this method:
(a) time to first division (expressed as a Normal distribution);
(b) the subsequent division time of cells that enter division; (c) the
half-life of cells that die before first division; (d) the rate of cell
death as they are undergoing subsequent divisions; and (e) the
proportion of starting cells that will proliferate.
Cyton Calculator method: A model of proliferation and survival

can be fitted directly to the data set obtained at the end of Step 6,
and optimal values for parameters describing proliferation and
survival can be determined using standard nonlinear fitting tech-
niques such as minimizing sums of squares. The Cyton model
developed by Hawkins et al.10 provides a more accurate description
of proliferation and survival parameters than those used for the
precursor cohort method, although, similar to all models, it makes
assumptions regarding the underlying operation of the cell. The
Cyton model uses lognormal distributions to describe time to
divide and die in the first division and for each subsequent division.
The ability to fit this model to experimental data sets is offered in
‘The Cyton Calculator’ software available for free download from
our website. The model also introduces a division destiny para-
meter, a distribution that describes the maximum number of
divisions a cell population undergoes, and therefore it can describe
data sets in which cells reach a natural limit to proliferation10. As
this is a complex and nonlinear model with many parameters,
time should be taken to become familiarized with the model and
the program.

MATERIALS
REAGENTS
.Purified B or T cells labeled with CFSE and treated as required for your

specific experiment in one 96-well tissue culture plate per time point
.Medium and medium supplements for cell culture (see accompanying article14)
.Propidium iodide (PI; Sigma)
.Calibrite beads (Becton Dickinson)
EQUIPMENT
.5 ml polystyrene round-bottomed tubes for FACS analysis

(Becton Dickinson)

.Flow cytometer

.Multichannel pipette

.FACS analysis software—FlowJo (Tree Star) or WEASEL
(WEHI)

.Data-fitting software such as GraphPad Prism (Graphpad Software Inc.) or
other suitable statistical packages

.Spreadsheet software such as Microsoft Excel (Microsoft)

.Cyton Calculator (for Step 8C only; WEHI; http://www.wehi.edu.au/
WEHI_Groups/workgrp/cyton/website/pages/cc.html)

PROCEDURE
Harvesting of time points
1| Add Calibrite beads to wells immediately before cell harvest and flow cytometric analysis to allow determination of cell
number. Correct addition of beads to culture is crucial for accurate time-series data. The number of beads added to the culture
should be in the range of 5–10% minimum of the total events measured in the flow cytometry files and should be added to the
culture in 10–50 ml of PBS. Prepare a stock of beads that is sufficient for use throughout the entire experiment. Mix the bead
stock thoroughly by pipetting before adding to each well. Within one time-point harvest, beads should be added to all wells
with the same pipette tip to reduce error. Prepare a stock of PI at 1 mg ml�1 in PBS and add 10 ml to each well. Mix the cells
and beads in each well thoroughly using a pipette (avoiding bubbles) and transfer samples to individual 5 ml polystyrene
round-bottomed tubes. It is not essential to harvest the entire sample, as cell numbers will be determined using a ratio of
cells to beads.

Collection of data
2| Set up the flow cytometer with instrument settings suitable for distinguishing the populations outlined in Figure 1. First
set up a forward scatter (FSC)/side scatter (SSC) dot plot to allow a clear distinction of live and dead cells as well as beads. This
dot plot should be used to set a gate for beads (Fig. 1a). An FSC/PI (FL-3) dot plot should be set up to set gates on live and
dead cells (Fig. 1b). A region should be set using the live cell gate and then used for an FL-1 histogram to show CFSE peaks
(Fig. 1c,d). These settings should be saved and used for all time points in an experiment.
? TROUBLESHOOTING
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3| Pipette each sample immediately before running to allow mixing of cells and beads. Collect 10,000–20,000 events
per sample. The acquired data file should contain all information collected, not just data from specific gates.

Calculating cell numbers per division at each time
4| Open the acquired FACS data in FACS analysis software. Set the gates on beads and live cells (Fig. 1a,b). An FL-1 histogram
on live cells will show CFSE peaks (Fig. 1c,d). Gates need to be drawn for each CFSE peak; this can be done either manually or
by using a peak fitting function if available in the analysis software (see Fig. 1d and the accompanying article14). Prepare a
table for the number of live cells in each division class (see Table 1 for a typical example).
m CRITICAL STEP If using a fitting function, care should to be taken to manually set the gate for division 0, a value for
CFSE autofluorescence (this can be obtained using non-CFSE-labeled cells), and to fit the number of division gates
(see ANTICIPATED RESULTS). Typically, the overlap near the autofluorescent level makes it difficult to resolve divisions
higher than about 7. The cells falling outside the final position should be recorded as greater than the last division counted
(Fig. 1c,d).
m CRITICAL STEP Gates need to be checked for each replicate FACS file within a time point. Gates should also be checked between
time points; it is common that the division 0 peak will shift to a slightly lower fluorescence over the duration of a time course as
discussed in the accompanying article14.

5| Calculate actual live cell numbers using a ratio based on the number of beads added to the cultures before harvest: total
number of cells in culture well (within live or dead gate) ¼ beads added/beads counted (within bead gate) � cells counted
(within live or dead gate).
m CRITICAL STEP For accurate determination of cell numbers, the number of beads added must be known and must be reproducible
over the course of the experiment.
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Figure 1 | Analysis of FACS data. CFSE-labeled

B cells were stimulated with aCD40 + IL-4 and

harvested in the presence of beads/PI as

described. (a) FSC/SSC plot with gate R1

indicating the position of the beads. (b) The same

data illustrated in a are presented as an FSC/PI

plot to exclude dead cells. Gate R2 includes all live

lymphocytes. (c) CFSE time-course data of

stimulated T cells. Note the slow decay of CFSE

intensity as demonstrated by the decline in the

fluorescence of the undivided peak (solid line).

The location of autofluorescence of stimulated

unlabeled cells on day 5 illustrates the difficulty

in resolving divisions greater than 7. Thus, we

recommend an 8+ division gate (shaded box).

(d) CFSE profile from R2 gate illustrated fitted

Gaussians to determine gates for division number.

TABLE 1 | Typical data from CFSE time-series experiments.

Harvest time (h)

Division 0 24 32 48 56 66 75 85

0 50,000 14,807 9,160 1,777 429 35 2 0
1 0 527 1,861 3,920 2,351 541 65 3
2 0 75 560 5,191 6,501 3,762 1,045 104
3 0 3 66 2,731 7,161 10,401 6,627 1,672
4 0 0 1 566 3,129 11,457 16,710 10,603
5 0 0 0 44 537 5,006 16,787 26,736
6 0 0 0 0 33 859 6,684 26,859
7 0 0 0 0 0 52 1,044 10,695
8 0 0 0 0 0 0 54 1,671

Total 50,000 15,412 11,648 14,229 20,141 32,114 49,018 78,342
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6| Calculate the actual cell numbers in each CFSE division peak: total number of cells (within division peak) ¼ total number
of cells (from Step 5) � fraction of total cells in division (from Step 4).

7| Repeat the calculations (Steps 5 and 6) for each culture condition at each time point. An example of tabulated data
representing the means of triplicates is shown in Table 1. A plot of typical data is shown in Figure 2a. If using Microscoft
Excel, to save time, spreadsheets can be devised to allow automated calculations of cell numbers as well as means and standard
deviations from the means of triplicate cultures.

Analysis of data for effects on proliferation/survival
8| Once a table of cell numbers per harvest time is created, if desired, subject the data to further analysis to recover
information about other proliferation parameters, including division and death rates. Two methods are offered here: options A
and B use the precursor cohort method, whereas option C uses the Cyton Calculator method. If using a precursor cohort method,
option A is most suitable for the basic user, whereas option B allows more thorough statistical calculation of mean division
numbers of precursor cohort plots.
(A) The precursor cohort method: basic method

(i) Generate a table of precursor cohort numbers by dividing the total number of cells in the ith division by 2i, where i is the
division number. Add 0.5 to division numbers (see CRITICAL STEP). An example of these data is shown in Table 2 and
Figure 2b.
m CRITICAL STEP CFSE analysis does not distinguish between cells that have just divided and those late in their division
cycle. However, for quantitative analysis, a continuous scale of division progression must be introduced. For example, a
cell that has just entered division 3 will be in division 3.0, halfway through its division it will be in division 3.5 and just
before dividing it will be in division 3.95. Note that all the above stages are recorded simply as division 3 when referenced
to CFSE profiles. Calculations of the mean division number need to take account of this continuous scale, so a mean such
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Figure 2 | Quantitative analysis of proliferation data. (a) Typical time-series cell number data. The

number of cells in each division is determined from their CFSE profiles and plotted against division number

for each harvest time. (b) Cell number data are converted to precursor cohort plots by dividing cell number

by 2division number. (c) Normal distributions (dashed line) can be fitted to precursor cohort plots (�) to

determine the mean division number of CFSE profiles at each harvest time. The advantage of using Normal

distributions to calculate mean division number is illustrated in (d), where not all cells have entered

division. The Normal distribution can extrapolate into the negative and approximate the division number of

undivided cells. Both time to divide and division time can be calculated as depicted in (e). The means of

precursor cohorts are plotted against harvest time and linear regression analysis is performed. Extrapolation

to the intercept with division 1 (dotted line) gives the mean time taken for lymphocytes to enter their first

division (mtd1), whereas the slope is a measure for the division time. (f) To determine the rate of death

before division entry, total cell numbers are plotted against harvest time and an exponential fitted.

(g) Both the approximate number of cells entering division and the loss of cells per division can be

estimated by plotting the areas of the precursor cohorts against the mean division numbers.
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as 2.3 divisions is possible. The half division scale is applied, as on average cells in a division are halfway between their
division cycle.

(ii) Fit Normal distributions to the precursor cohort plots (Fig. 2c) for each time point. The distribution should be fitted only
to data for cells in division (i.e., leave out division 0 data). Allow the fitting software to extrapolate the distribution to
negative division values when necessary (Fig. 2d).
m CRITICAL STEP Estimating the average division number of the dividing cohorts of cells is complicated by the fact that
many of the precursor cohort plots will have only a partial or truncated Normal distribution. The mean of these distribu-
tions must therefore be estimated as though they were complete, which potentially involves extrapolating to negative
values, as discussed previously and illustrated in Figure 2d.
’ PAUSE POINT Fitting Normal distributions can be achieved using a data-fitting software package such as GraphPad
Prism (Graphpad Software Inc.) or other suitable statistical analysis packages. A basic understanding of the fitting soft-
ware is required such that the means, standard deviations and areas of the Normal distributions can be extracted. The
remaining plots and trendlines can be drawn and fitted in a spreadsheet such as Microsoft Excel. A more advanced
procedure for calculating the parameters required for this method directly from data from Step (i) is given in Step 8B.

(iii) Tabulate results as shown in Table 3.
(iv) Plot mean division number versus harvest time (Fig. 2e). Only use harvest times that have sufficient data to fit a Normal

distribution, that is, plots with a reasonable number of cells participating in division (times 448 h in the example;
Fig. 2e). A general rule to work by is that mean division numbers 41.5 will give the most accurate results.

(v) If the plot from Step (iv) is linear, fit a trendline and calculate the slope and intercept with division 1. Possible reasons
why a linear plot is not produced are discussed in the ‘Practical applications of the precursor cohort method’ section.
Trendline fitting can be done automatically in Microsoft Excel by right clicking on the line and selecting ‘add trendline’.
The equation for this fitted line can be displayed by selecting ‘display equation’ in the options menu and will typically be
in the standard equation for a line format y ¼ mx + c. The apparent time between subsequent divisions is given by 1/m
(Fig. 2e). The apparent mean time to first division (mtd1) is given by the intercept of this plot with division 1. This can
be calculated by solving the equation mtd1 ¼ (1 � c)/m (Fig. 2e).

(vi) Estimate the half-life of cells leading up to first division. Choose harvest times before division begins
(o30 h in the example). Plot total live cell number against time of harvest (Fig. 2f). Fit an exponential function
(as described previously). This equation will typically be in the format y ¼ e�kx, where k is the exponential decay
constant. Calculate the half-life of cells that die before first division using the following formula: half-life ¼ (ln(2))/k.

(vii) Estimate the rate of cell loss per division. Plot the area of the Normal distributions fitted to the precursor cohort plots
(where area is represented as cell number) versus the
corresponding mean division number. If a constant
proportion is lost at each division, an exponential pattern
will be obtained (see Fig. 2g). Fit an exponential trendline
to these data (as described previously). The proportion of
cells dying per division can be estimated using the follow-
ing formula: death per division ¼ 1 � e�k.

(viii) Estimate the proportion of starting cells that will enter
first division. The plot (Fig. 2g) from Step (vii) can be
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TABLE 2 | Time-series data converted to precursor cohort format.

Harvest time (h)

Division 0 24 32 48 56 66 75 85

0.5 50,000 14,807 9,160 1,777 429 35 2 0
1.5 0 263 930 1,960 1,176 270 33 1
2.5 0 19 140 1,298 1,625 941 261 26
3.5 0 0 8 341 895 1,300 828 209
4.5 0 0 0 35 196 716 1,044 663
5.5 0 0 0 1 17 156 525 836
6.5 0 0 0 0 1 13 104 420
7.5 0 0 0 0 0 0 8 84
8.5 0 0 0 0 0 0 0 7

Total 50,000 15,089 10,239 5,413 4,338 3,433 2,806 2,244

TABLE 3 | Typical data set after precursor cohort analysis.

Harvest time Mean division number SD Area

32 �0.61 1.060 15,958
48 1.55 1.041 5,120
56 2.35 1.042 4,290
66 3.35 1.042 3,432
75 4.25 1.042 2,807
85 5.25 1.060 2,235
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extrapolated to intercept with division 1. This number is an estimate of the expected number of cells entering
first division.
m CRITICAL STEP A Microsoft Excel worksheet ‘STEP-BY-STEP’ and the set of data presented in this article can be down-
loaded from our website (http://www.wehi.edu.au/WEHI_Groups/workgrp/cyton/website/pages/pcm.html), which allows
easy calculation of the parameters of the precursor cohort method directly from data obtained from Step 7.

(B) Calculating mean division number from cohort data: advanced method
(i) Fit the cohort division numbers to a probability weight function Pi, constructed from the Gaussian probability density

function, where m is the mean and s is the standard deviation, as follows:

PðnÞ ¼ expð�ðn� mÞ2=2s2Þ
s
ffiffiffiffiffiffi
2p

p
 !

(ii) Perform a least squares fit, whereby the function

w2ðm; s; aÞ ¼
XN
i¼1

wi � aPið Þ2

is minimized, ignoring the undivided cells (i ¼ 0). Here a is a weighting representing the fraction of the cohort that
divides, where wi are data points and

Pi ¼
Zni+1

ni

PðnÞdn

(iii) This least squares fit yields parameter values for m, s and a.
(iv) If an estimate of confidence in the values of the parameters obtained from the above fitting is required, a Monte-Carlo

bootstrap method can be used. This involves repeating the fit a number of times, each time with a set of synthetic data
chosen randomly from a Normal distribution with a mean given by the measured data point, and a standard deviation
given by the standard deviation of the residuals from the original fit. In this way, we obtain a distribution of possible
values for each parameter, from which we can obtain the mean and standard deviation for each of the estimated para-
meters. The standard deviations obtained in this way can then be used as weighting for fitting in the subsequent linear
regression analysis (Steps 8A(iv) and (v)).
m CRITICAL STEP If the average number of divisions is less than 2, the ability to find a reasonable Normal distribution is
limited. For this reason, the analysis and conclusions should focus on data sets where the average division number is
greater than 2. It is also possible to take the standard deviation from later time points and fix that value when fitting to
earlier time points. If this method is to be used, care needs to be taken with the possibility for overestimating the stan-
dard deviations.

(v) Use linear regression techniques to fit a line to the data for the mean division number as a function of time, as mentioned
in Step 8A(v), using the equation

y ¼ mx + c

This is done with a weighted sum of squares using the mean division number mi and the standard deviation in this value
si, obtained from the Monte-Carlo bootstrapping method, by minimizing the function

w2ðm; cÞ ¼
XN
i¼1

yi � mxi � c

si

� �2

where ni is the calculated average division number and si is the standard deviation in that value, as calculated above.
(vi) From the parameters obtained from the time to first division, calculate utd1¼(1 – c)/m and the division time 1/m. Confi-

dence limits on these values can be calculated using the standard deviations for the mean division number si, assuming
that there is no error in the time measurements.

(vii) If you wish, use the mean division numbers from this more advanced method to calculate cell loss through divisions and
apparent proportion of responding cells (Steps 8A(vii) and (viii)) using the graphical techniques described previously.

(C) Fitting data directly to a model using Cyton Calculator
(i) Open the Cyton Calculator. Open the data set to be analyzed. Select ‘display cell proliferation and death graphs’ and view

‘commonly viewed graphs’. This will allow the user to visualize the real data and ‘Cyton Calculator’ model estimates.
(ii) Adjust various parameter values using the slide controls or directly input plausible parameter values. Use the ‘model fit’

button to optimize parameter values to obtain the best possible fit.
? TROUBLESHOOTING
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(iii) First attempt to fit the data with a minimal set of parameters. For example, some data sets may be able to be fit without a
value for division destiny. Restricting the variation in time to subsequent division and cell death in subsequent divisions
may also help fitting of parameters describing entry to division. The parameters describing subsequent division behavior
can then be added back as needed or desired.

(iv) Use the ‘model fit’ button to obtain parameter values that give the best fits possible and record the sum of squares.

� TIMING
Assay setup: 1–2 h
Harvesting and FACS analysis at each time point: 1 h, depending on the number of conditions
Data analysis to obtain cell numbers: 3 h
Analysis of cell number data by precursor cohort analysis or Cyton modeling: a typical data set can take 3–5 h to analyze; how-
ever, the results of precursor cohort analysis are often revisited and hence the total time required may increase

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 4.

ANTICIPATED RESULTS
The precursor cohort method
Interpreting the mean division versus harvest time plot (Step 8A(iv)). The result of this plot is usually linear; however, if
cultured for long periods, the proliferation of lymphocytes will slow down owing to depletion of culture nutrients. This will be
apparent as a flattening of the plot (shown in Fig. 3a). Some lymphocyte cultures also display a limit to the number of
divisions reached that is not due to culture depletion and will also show a plateau. Additional experiments are required to
determine the cause of a plateau in division progression. Only the range of harvest times falling in the linear part of the
curve should be used to calculate the division times and the apparent time to first division.

In the linear portion of this plot, the slope of the line of best fit is equal to the reciprocal of the division time (Fig. 2e), that
is, a shallower slope represents a slowly dividing population, whereas a steeper gradient indicates a faster dividing population.
The intersection of the line of best fit with division 1 on the y axis gives an estimate of the mean time to first division
(Fig. 2e). In the illustrated example in Figure 2e, the equation for the fitted trendline is y ¼ 0.1x + (�3.24) (using the
standard y ¼ mx + c nomenclature). Therefore, the division time ¼ 1/0.1 or 10 h, whereas mtd1 ¼ (1�(�3.24))/0.1 or 42 h.
However, it should be noted that both parameters can be affected by significant death of dividing cells, and for this reason we
say the calculation is of an ‘apparent’ value (discussed later).
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TABLE 4 | Troubleshooting table.

Step Problem Possible reason Solution

2 CFSE fluorescence is off the scale At very early time points, cells will have very
bright CFSE fluorescence

Do not adjust FL-1 voltage at early time
points

By 12–15 h, the CFSE fluorescence will be in
a useful range

Use FSC/SSC and FSC/PI dot plots to set
gates for beads and cells at early time
points

2 CFSE autofluorescence is reached after very
few rounds of cell division

For adequate distinction of multiple CFSE
peaks, the starting fluorescence needs
to be Z103

Increase the number of cells being
labeled

Labeling very small numbers of cells with
CFSE sometimes leads to poor starting
fluorescence

Follow instructions on CFSE labeling
(temperature, duration, concentration)
precisely14,16

2 There are many live cells in the auto-
fluorescence region

Once cells have divided a certain number
of times, division peaks are no longer
distinguishable

See ANTICIPATED RESULTS

8C(ii) The fitting tool in Cyton Calculator gives
inappropriate parameter values or a very
poor fit

The Cyton Calculator has a fitting tool that
will function reasonably only if approxi-
mately reasonable parameter values are
given as a starting point

Estimate parameter values for time to
first division, subsequent division time
and division destiny on the basis of
experimental observations or precursor
cohort method parameters
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Interpreting the loss of cells plot (Step 8A(vi)). Unstimulated lymphocytes tend to die in culture at an approximately
exponential rate. Even stimulated cells will often follow this rate of death before division, significantly reducing the proportion
of the starting cells that participate in proliferation. Under some conditions, the rate of cell loss is altered. For example,
in B-cell cultures, the presence of cytokines such as interleukin-4 (IL)-4 or stimuli such as lipopolysaccharide (LPS) can
significantly reduce the rate of loss. The plot generated in Step 2 helps determine whether measured differences in the frequency
of proliferating cells between two different culture conditions are due to effects on cell survival or sensitivity to the stimulus.
The use of an exponential survival curve is convenient, as it provides a reasonable fit to the data. However, for greater accuracy,
other skewed probability distributions can be used, such as the lognormal (see ref. 10 for further discussion). Once the exponen-
tial curve is fitted, the decay constant k can be used to calculate the half-life of the cells. For example, in Figure 2f, the
exponential constant k ¼ 0.047. Therefore the half-life of undivided cells is ln 2/k or 14.8 h.
Interpreting the plot of area/cell number versus mean division number (Step 8A(vii)). Plotting the mean division number
against the corresponding area of fitted Normal distributions can be used to quantify cell loss through death (Figs. 2g,3b). As
the cohort method follows the fate of the original starting cells, a reduction in the area of fitted Normal distributions as the
time course progresses indicates that cell death is occurring. In contrast, a constant area suggests that there is little cell death
occurring as cells divide. A range of possible outcomes is shown in Figure 3b. If the loss of cells through subsequent divisions
is a constant proportion per division, the expected outcome of this plot is an exponential distribution (Figs. 2f,3b). Cell death
can be regulated in culture and may be affected by division number and/or culture conditions. In some situations, the pattern
of cell loss may not follow an exponential but may appear to change and increase with division number (which could also be
affected by time). Further experiments will be required to characterize the reason for the pattern. In the example shown in
Figure 2g, the decay constant of the fitted trendline is k ¼ 0.224. Therefore, the death per division can be calculated using the
following formula: death per division ¼ 1 � e�0.224 or 0.20 or 20%.

In Step 8A(viii), it is suggested that this plot can be extrapolated to division 1 to indicate the number of the starting cells
that will enter first division. This can be done easily if there is little evidence of cell death and if the plot is flat, or if it follows
a clear pattern such as the exponential. Even then, the significant ‘gray area’ in obtaining good estimates from cohort plots
with mean values of two divisions or less means that this value for cell number entering first division is unlikely to be accurate
and is offered for calculation as a guide only.

Practical applications of the precursor cohort method
The precursor cohort method of analyzing data from CFSE experiments is particularly well suited to making direct comparisons
between the effects of various stimulation conditions on proliferation parameters. Examples of a cohort analysis performed on
data obtained from OT-1 T cells stimulated with different concentrations of peptide and 100 U ml�1 IL-2 are shown in Figure 3c
and d. Figure 3c demonstrates that reducing the concentration of peptide in T-cell cultures reduces the speed of subsequent
division speed (ranging from 7.5 h per division at 6.0 mg ml�1 to 10.6 h at 0.2 mg ml�1). The mean time to first division is
also delayed significantly when the concentration of peptide is reduced (42.1–51.8 h). This set of data example also illustrates
the possible outcomes when death is analyzed using graphical methods (Fig. 3d). As the concentration of peptide is reduced,
the proportion of cells lost through subsequent divisions steadily increases from 16% at 6.0 mg ml�1 to 30% at 0.2 mg ml�1.
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Figure 3 | Experimental situations. (a) B cells stimulated with various concentrations of CpG. This experiment represents a common occurrence in in vitro

cultures. Cells cease proliferating owing to extrinsic factors such as exhausted access to stimuli or space or internal regulation of division number. Hence, the

progression of cells through division halts, and a plateau is observed in mean division number. (b) An increase in cell loss per division will lead to a steeper

fitted exponential curve. (c,d) CFSE-labeled OT-I CD8 T cells were stimulated with various concentrations of peptide in the presence of 100 U ml�1 IL-2 and

analyzed using the described cohort methods. Graphical analysis illustrates that reducing the peptide concentration delays the time taken to enter the first

division (as determined by a delay in the intercept with 1 on the y axis) and the speed of subsequent division times (as illustrated by a reduction in the

gradient of the fitted line). Also depending on the culture conditions, a substantial reduction in the areas of precursor plots may be observed, indicating that a

proportion of cells are lost during division (as in b). In other cases, only relatively few cells enter division as a result of a low progressor fraction or a late time

to first division. In these situations, cell numbers become difficult to analyze (d).
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The intercept of fitted lines with 0 also indicates that increasing the concentration of the peptide increases the number of cells
entering the first division.

These methods provide excellent readouts for comparison of division times and death rates within time-course experiments;
however, there are limitations that should be considered. This technique is built on the assumption that the variation in time to
first division can be approximated using a Normal distribution. In T-cell assays, although the entry to first division is better
described by a lognormal distribution5, the data can be reasonably well approximated using a Normal distribution, as the
variation observed is relatively low. However, B-cell cultures and T-cell cultures with low levels of stimulation exhibit a greater
variance in time to first division and a significant departure from the Normal distribution3,5. Therefore, precursor cohort plots
from these cultures are subject to errors when fitted by a Normal distribution as illustrated in Figure 4a,b. Nevertheless, Normal
distributions can still be used to approximate the mean division number and area although with slightly more error.

Mutually exclusive factors controlling lymphocyte proliferation can affect the readouts using these methods. For example, the
mean time to first division can appear to be delayed in cultures with large death rates in dividing cells, despite there being no
actual change in the time to first division. This is demonstrated in Figure 4c for theoretical data created using the model
described in ref. 10. Similarly, if a significantly large proportion of cells fail to progress through division, the accuracy of the
method is reduced. Thus, data from cultures with low levels of stimulation may be difficult to analyze. The analysis of cohort
data in conjunction with assays measuring the time to first division (e.g., the colcemid method described in Deenick et al.5)
therefore aids in constraining parameters of lymphocyte proliferation and significantly increases the accuracy of analysis. An
example of data obtained from the colcemid method is shown in Figure 4d, demonstrating the usefulness of this technique for
identifying changes in mean time to first division and variation.

Estimates of error bars from precursor cohort data
When applying the bootstrapping method to cell number data, a range of fits is generated that provide confidence intervals for
the estimated parameters: mean division number, standard deviation and area/cell number. When expressed as 95% confidence
intervals, these bounds can be introduced into the weighted linear fit for the plot of mean division number versus time of
harvest (Step 8A(iv) and Fig. 3c,d). The advantage of undertaking a more rigorous statistical approach is that hypothesis
testing methods can be used to establish the likelihood of two values being different.

Fitting data directly to a model using Cyton Calculator
The cohort method provides a simple step-by-step approach for the quantitative analysis of proliferation data. More
sophisticated analysis and hypothesis testing require a parametric model of the underlying dynamic process in question. To this
end, our laboratory has spent considerable time dissecting cell proliferation data based on CFSE experiments to develop suitable
general models that are applicable for most applications. We have also developed software with user-friendly interfaces that can
apply appropriate models to data tabulated in the form generated in Step 8. The strength of the Cyton Calculator tools lies in its
ability to make quantitative models accessible to the everyday researcher. The Cyton Calculator, instruction booklet and sets of
test data are freely available for download at http://www.wehi.edu.au/WEHI_Groups/workgrp/cyton/website/pages/cc.html.
The advantage to this approach is that it provides the user with a tool for complex analysis of data. However, the disadvantage
is that the process of fitting complex nonlinear models to data may be unfamiliar, and therefore the intricacies and pitfalls of
the process must be appreciated if sensible information is to be gained. Furthermore, several quantitative models have been
proposed for the analysis of lymphocyte data5,7–9,15. Each of these models has different theoretical assumptions and each may

  
p

u
or

G  
g

n i
h si l

b
u

P er
u ta

N 700 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

0

1

2

3

4

5

6
40 h
20 h
15 h 1.1 µg ml–1

3.3 µg ml–1
10.0 µg ml–1

10 h

Harvest time (h)

M
ea

n 
di

vi
si

on
 n

um
be

r

C
el

l p
ro

ge
ny

 n
um

be
r 

(×
 1

0–2
)

C
el

l p
ro

ge
ny

 n
um

be
r 

(×
 1

0–3
)

0

1

2

3

4

C
ou

nt
s 

pe
r 

m
in

ut
e 

(×
 1

0
–3

)

Time (h)

5

0

1

0 2 4 6 8 0 2 4 6 0 20 40 60 808

2

3

4

5

6

0

2

4

6

8

10

12

14

Division Division

0 25 50 75 100 125 150

a b c d

Figure 4 | Caveats to quantitative analysis. Normal distributions (dashed lines) were fitted to cohort data from (a) CD4 T-cell cultures stimulated with 10 mg ml�1

aCD3 and 100 U ml�1 IL-2 and (b) B-cell cultures stimulated with 15 mg ml�1 LPS. Note the greater variation observed in LPS-stimulated B-cell cultures. (c) Mock

data generated with the Cyton model10 were analyzed using the precursor cohort method. The means of subsequent death times were altered as shown, whereas all

other parameters were kept constant. Note the delay in mtd1 in cultures where dividing cells die earlier in subsequent divisions. (d) The mtd1 of B cells stimulated

with various concentrations of aCD40 has been directly measured using the colcemid method described in Deenick et al.5. Conducting this assay in conjunction with
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find uses in particular applications. However, we believe that the Cyton model is the most accurate and well-characterized
description of lymphocyte proliferation.

The Cyton model differs from the precursor cohort method in the following ways. First, the variation in time to first division
is described using a lognormal distribution instead of a Normal distribution. Second, deterministic parameters are not used to
describe subsequent division and death times. Instead, the variation in these processes is described using lognormal
distributions. And finally, the number of divisions that each cell progresses through can be regulated. Thus, the introduction of
extra parameters not only increases the complexity of the Cyton model, but also gives a more accurate representation of the
processes occurring in an in vitro culture. The theoretical basis of the Cyton model10 should be understood before it is utilized
for data fitting.

Quantitative analysis is often used to examine the effect of some change in culture conditions on the underlying parameters
of proliferation. In these situations, the Cyton Calculator can be used to test hypotheses. For instance, a basic situation might
read as follows: data from graphical analysis might suggest that the division time is delayed as the concentration of ‘stimulus A’
is reduced in culture. Using the Cyton Calculator, the researcher would find an optimal solution for the highest concentration of
‘stimulus A’. Subsequently, alternative fits for lower concentrations of the stimulus would be generated by changing only the
length of the division time. If the rule holds true, the hypothesis is thus supported. If not, alternative parameters may need
to be investigated. Examples of this approach are illustrated in systems studying regulation of T-cell growth by T-cell receptor
stimulation and cytokines3,5,6.
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